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J. R, OPPENHEIMER AND G. M. VOLKOFF

Department of Physics, University of California, Berkeley, California

(Received January 3, 1939)

It has been suggested that, when the pressure within stellar matter becomes high enough,
a new phase consisting of neutrons will be formed. In this paper we study the gravitational
equilibrium of masses of neutrons, using the equation of state for a cold Fermi gas, and general
relativity. For masses under —,Q only one equilibrium solution exists, which is approximately
described by the nonrelativistic Fermi equation of state and Newtonian gravitational theory.
For masses —,'Q &m&-,'Q two solutions exist, one stable and quasi-Newtonian, one more
condensed, and unstable. For masses greater than 4 Q there are no static equilibrium solutions.
These results are qualitatively confirmed by comparison with suitably chosen special cases
of the analytic solutions recently discovered by Tolman. A discussion of the probable eEect
of deviations from the Fermi equation of state suggests that actual stellar matter after the
exhaustion of thermonuclear sources of energy will, if massive enough, contract indefinitely,
although more and more slowly, never reaching true equilibrium.

I. INTRoDUcTIQN

~OR the application of the methods commonly
used in attacking the problem of stellar

structure' the distribution of energy sources and
their dependence on the physical conditions
within the star must be known. Since at the time
of Eddington's original studies not much was
known about the physical processes responsible
for the generation of energy within a star,
various mathematically convenient assumptions
were made in regard to the energy sources, and
these led to different star models (e.g. the
Eddington model, the point source model, etc.).
It was found that with a given equation of state
for the stellar material many important properties
of the solutions (such as the mass-luminosity
law) were quite insensitive to the choice of
assumptions about the distribution of energy
sources, but were common to a wide range of
models.

In 1932 Landau' proposed that instead of
making arbitrary assumptions about energy
sources chosen merely for mathematical con-
venience, one should attack the problem by first
investigating the physical nature of the equi-
librium of a given mass of material in which no
energy is generated, and from which there is no
radiation, presumably in the hope that such an

~A. Eddington, The Internal Constitution of the Stars
(Cambridge University Press, 1926); B. Stromgren,
Ergebn. Exakt. Naturwiss. 10, 465 (1937);Short summary
in G. Gamow, Phys. Rev. 53, 595 (1938).' L. Landau, Physik. Zeits. Sowjetunion 1, 285 (1932).

3

investigation would afford some insight into the
more general situation where the generation of
energy is taken into account. Although such a
model gives a good description of a white dwarf
star in which most of the material is supposed to
be in a degenerate state with a zero point energy
high compared to thermal energies of even 10'
degrees, and such that the pressure is determined
essentially by the density only and not by the
temperature, still it would fail completely to
describe a normal main sequence star, in which
on the basis of the Eddington model the stellar
material is nondegenerate, and the existence of
energy sources and of the consequent temperature
and pressure gradients plays an important part in
determining the equilibrium conditions. The
stability of a model in which the energy sources
have to be taken into account is known to depend
also on the temperature sensitivity of the energy
sources and on the presence or absence of a
time-lag in their response to temperature changes.
However, if the view which seems plausible at
present is adopted that the principal sources of
stellar energy, at least in main sequence stars, are
thermonuclear reactions, then the limiting case
considered by Landau again becomes of interest
in the discussion of what will eventually happen
to a normal main sequence star after all the
elements available for thermonuclear reactions
are used up. Landau showed that for a model
consisting of a cold degenerate Fermi gas there
exist no stable equilibrium configurations for
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masses greater than a certain critical mass, all
larger masses tending to collapse. For a mixture
of electrons and nuclei in which on the average
there are two protonic masses per electron
Landau found the critical mass to be roughly
1.5 Q, and in general the critical mass is inversely
proportional to the square of the mass per
particle obtained by spreading out the total mass
over only those particles which essentially de-
termine the pressure of the Fermi gas.

The possibility has been suggested' that in
sufficiently massive stars after all the thermo-
nuclear sources of energy, at least for the central
material of the star, have been exhausted a
condensed neutron core would be formed. The
minimum mass for which such a core would be
stable has been estimated by Oppenheimer and
Serber, ' who on taking into account some effects
of nuclear forces give approximately 0.1Q as a
reasonable minimum mass. The gradual growth
of such a core with the accompanying liberation
of gravitational energy is suggested by Landau as
a possible source of stellar energy.

In this connection it seems of interest to ask
whether this model of the final state of a star can
be right for arbitrarily heavy stars, i.e. , to
investigate whether there is an upper limit to the
possible size of such a neutron core. Landau's
original result for a cold relativistically degenerate
Fermi gas quoted above gives in the case of a
neutron gas an upper limit of about 6Q beyond
which the core would not be stable but would
tend to collapse. Two objections might be raised
against this result. One is that it was obtained on
the basis of Newtonian gravitational theory while
for such high masses and densities general
relativistic effects must be considered. The other
one is that the Fermi gas was assumed to be
relativistically degenerate throughout the whole
core, while it might be expected that on the one
hand, because of the large mass of the neutron,
the nonrelativistically degenerate equation of
state might be more appropriate over the greater
part of the core, and on the other hand the
gravitational effect of the kinetic energy of the
neutrons could not be neglected. The present

' G. Gamow, Atomic Nuclei and Nuclear Transformations
(Oxford, 1936), second edition, p, 234. L. Landau, Nature
141, 333 (1938) and others.

4 J. R. Oppenheimer and R. Serber, Phys. Rev. 54, 540
(&938).

investigation seeks to establish what differences
are introduced into the result if general relativistic
gravitational theory is used instead of Newtonian,
and if a more exact equation of state is used. A
discussion of the general relativistic treatment of
the equilibrium of spherically symmetric distri-
butions of matter is first given, and then the
special ideal case of a cold neutron gas is treated.
A discussion of the results, and comparison with
some results of Professor R. C. Tolman reported
in an accompanying paper are given in the
concluding sections.

ds' = e "dr' r—'d8' r—' sin' g—d@'+e"dt'
(&)

X =X(r), v = r(r).

If the matter supports no transverse stresses and
has no mass motion, then its energy momentum
tensor is given by'

Tg' ——Tg' ——T'= —p T44= p

where p and p are respectively the pressure and
the macroscopic energy density measured in

proper coordinates. With these expressions for
the line element and for the energy momentum
tensor, and with the cosmological constant A

taken equal to zero, Einstein's field equations
reduce to:~

(v 1$ 1
8 p=e "i —+—

)
——,

E. r r') r'

pX' 1 l 1
8m p=e-"( ———)+—,

E. r r'&

dp (p+ p),
df 2

(4)

where primes denote differentiation with respect
to r. These three equations together with the
equation of state of the material p=p(p) de-

' R. C. Tolman, Relativity, Thermodynamics and Cos-
molof, y (Oxford, 1934), pp. 239-241.

'R, C. Tolman, reference 5, p. 243.' R. C. Tolman, reference 5, p. 244.

II. RELATIVISTIC TREATMENT OF EQUILIBRIUM

It is known' that the most general static line
element exhibiting spherical symmetry may be
expressed in the form
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termine the mechanical equilibrium of the matter
distribution as well as the dependence of the
g»'s on r.

The boundary of the matter distribution is the
value of r = rb for which P =0, and such that for
r (rb, p )0. For r (rb the solution depends on the
equation of state of the material connecting p
and p. For many equations of state a sharp
boundary exists with a finite value of rb.

In empty space surrounding the spherically
symmetric distribution of matter p = p =0, and
Schwarzschild's exterior solution is obtained:

e "&'& =1+A/r, e"&'& =B(1+A/r) (6)

The constant e"'"b) is determined by making e"

continuous across the boundary.

2m' &

v&"& 2dp
e"&"& =

~

1 ——
~

exp (7)
rb 4 ~&& P+P(P)

Thus e" is known as a function of r if p is known
as a function of r Further in. Eq. (4) introduce a
new variable

u(r) =-', r(1 —e ") or e—"=1—2N/r (8).
Then Eq. (4) becomes:

du/dr =4sp(p) r'. . (9)

In Eq. (3) replace e " by its value from (8) and v'

by its value from (5). It becomes:

p+ p(p)
$4&rpr'+ u7 (10).

dr r(r —2u)
' R. C. Tolman, reference 5, p. 203.' R. C. Tolman, reference 5, pp. 203 and 207.

The constants A and 8 are fixed by the require-
ment that at great distances away from the
.matter distribution the g„„'s must go over into
their weak-field form, i.e., 8= 1,A = —2m where
m is the total Newtonian mass of the matter as
calculated by a distant observer. '

Inside the boundary Eqs. (3), (4) and (5) may
be rewritten as follows. Using the equation of
state p =p(p) Eq. (5) may be immediately
integrated.

v&~& 2dp
v(r) = I (rb)—

p+ p(p)
v&~& 2dp

v(r) gv(rb) eXp
o p+ p(p)

Equations (9) and (10) form a system of two
first-order equations in I and p. Starting with
some initial values u=u&& p= p&& at r=0, the two
equations are integrated simultaneously to the
value r=rb where P=O, i.e. , until the boundary
of the matter distribution is reached. The value
of u=u~ at r =r~ determines the value of e"("b) at
the boundary, and this is joined continuously
across the boundary to the exterior solution,
making

rb rb ( 2m)
Nb

———L1 —e "&"'&7=—1 —
(

1 —
~

=m.
2 2

Thus the mass of this spherical distribution of
matter as measured by a distant observer is
given by the value I& of I at r=rb.

The following restrictions must be made on the
choice of p&& and u&&, the initial values of p and u
at r=O:

(a) In accordance with its physical meaning as
pressure, P&&~0.

(b) From Eq. (8) it is seen that for all finite
values of e ", up=0. Since g~~

———e" must never
be positive, F0=0 for infinite values of e—~ at the
origin. However, it may be shown that of all the
finite values of p&& at the origin p&&

——0 is the only
one compatible with a negative value of No, and
that for equations of state of the type occurring
in this problem even this possibility is excluded,
so that No must vanish. '

(c) A special investigation for any particular
equation of state must be made to see whether
solutions exist in which O~u&I ——0&& and p—b ~
as r-+0.

III. PARTIcULAR EQUATIoNs QF STATE

The above arguments show that Eqs. (9) and

(10) together with a given equation of state
completely determine the distribution of matter.

' This can be seen from the following argument. Having
chosen some particular value of p0 one may usually repre-
sent the equation of state in that pressure range by p =E'p'
with some appropriate value of s. Using this equation of
state and taking the approximate form of Eq. (10) near
the origin for the case 10&0, and finite p0, one obtains:

e e+.V) &+I:~
dr 2r 2r

Integration of this equation shows that for s &1 p0~0 can
not be satisfied, and for s~1 only the value p0=0 is
possible. For the equations of state used in this problem
always s&j. holds. It may also be noted that the above
equation together with Eq. (7) show that e"(")~~ as r~0.
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p =Z(sinh t —t),

p= —,'Z(sinh t 8sinh 2t—+3t),

where Z = nu04c'/4It'

(11)

(12)

(13)

The assumption p=const. , Up=0 makes it pos-
sible to integrate Eqs. (9) and (10) explicitly
and leads to Schwarzschild's interior solution. "
Other matter distributions corresponding to
other equations of state are given by Professor
Tolman in an accompanying paper.

If the matter is taken to consist of particles of
rest mass pp obeying Fermi statistics, and their
thermal energy" and all forces between them are
neglected, then it may be shown that a para-
metric form for the equation of state is:"

dQ—= r'(sinh t t), —
dr

(18)

These equations are to be integrated from the
values N=O, t=tp at r=O to r=r~ where tg=O
(which makes p=0), and u=uq.

A note must be made of the units employed
in these equations. Eqs. (3), (4) and (3) from
which (16) and (17) are derived are stated in
relativistic units, "i.e. , such that c=1, G=1 (c is
the velocity of light, G is the gravitational
constant). This determines the unit of time and
the unit of mass in terms of a still arbitrary unit
of length. The unit of length is now fixed by the
requirement that Z=1/4m. Eqs. (16) and (17)
now become:

and t=4log
/

+ 1+](p (p &' *&

Luoc (+pc J )
(14)

dr

sinh t —2 sinh 2t

r(r 2u) cos—h t 4cos—h -,'t+3
where p is the maximum momentum in the
Fermi distribution and is related to the proper
particle density N/V by

8x

V 3h'

Substituting the above expressions for p and p

into Eqs. (9) and (10) one gets:

X Pr'(sinh t+8 sinh ', t+3t) +-u). (19)

The unit of length has been fixed to be

1( hp& c

s. E poc& (uoG)&

while the unit of mass is

dQ—=4sr'Z(sinh t t), —
dr

(16)

c' 1t lt )& c'a=—
G vr ( @pc) (uoG') &

dt 4 sinh t —2 sinh -', t

dr r(r 2u) cosh t —4cosh -', t+3—
X [(4/3)sZr'(sinh t 8sinh —',t+3t)—+u j (17).

"R.C. Tolman, reference 5, pp. 246-247.
'~The condition for thermal equilibrium in a static

gravitational field is given by Tolman (reference 5, p. 318)
as T0(g44)& =const. where T0 is the proper temperature. The
equilibrium state of a matter distribution which no longer
radiates appreciably corresponds to a low surface tempera-
ture T0. If g« is everywhere finite, then T0 will be small
throughout the matter distribution. For those singular
solutions in which g44 vanishes at the origin it is conceivable
that the central temperature may be high. However, on
the one hand from Eq. (7) it is seen that the vanishing of g«
at the origin. corresponds to infinite central pressure, and in
this limit the equation of state given below reduces to
p=3P so that temperature introduces no radically new
eEects, and on the other hand zero values of g44 indicate
the slowing down of all physical processes near the origin
and thus may correspond to nonstatic solutions describing
states which have not yet attained equilibrium, and which
are not discussed in this paper.

i' Cf. S. Chandrasekhar, Monthly Notices of R.A.S. 95,
222 (1935),but introduce energy density in place of his tnass
density.

du/dr = ,'r'e'- (20)

dr

-r3—e'+n .
r(r —2u) 6

(21)

'4 R. C. Tolman, reference 5, pp. 201—202.

For a neutron gas a=1.36X10'cm, b=1.83)&10"
g. The general character of the solution is seen
to be independent of the mass of the neutron
which determines only the scale of the result.

No way was found to carry out the integration
analytically, so Eqs. (18) and (19) were inte-

grated numerically for several finite values of $p.

For all these cases up was taken to be equal to
zero, since the equation of state near the origin
for finite to behaves like p(p) =Zp*, s(1. The
first four entries in Table I were thus obtained.

For to—+ ~ Eqs. (18) and (19) may be replaced

by their asymptotic expressions:
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An exact solutloQ of these equations 18:

e'=3/7r', u =3r/14, (22)

which corresponds to to= Oc, so=0. A cRlcful
examination of Eqs. (20) and (21) shows that
there are no other solutions corresponding to
to ~, 0=NO= —~. The exact solution (22) of
the RppfoxllllRte eqllR'tlolis (20) Rnd (21) was
taken out to that value of r where k=6 (the
approximation in the form of Eq. (20) and (21)
lt qUlte good for $—6), and then the llltegl R'tloll

of the exact equations (18) and (19) was carried
out numericRHy to r=rf, ~here /=0. This gave
the last entry in Table I.

It 18 of lntcIcst to Rsk Whether perhaps R

6nlte gravItatlonal IDRss 1Tllght col respond to RQ

infinite number of partlclcs, Rnd Rn infinite
gI'RvltRtlonal blndlng cncrgy. It ITlRy bc sceQ
that this is not the case by the following argu-
ment. Although thc propel particle density
becomes inhnite ~hen the central pressure be-
comes in6nite, still it remains integrable, so that
the total number of particles ahvays remains
6nite. The element of proper volume of a
spherical shell is 4m'~~'r'dr. As the solution of
thc RpproxllrlRtc cquRtlons shows 1Q the Qclgh-
borhood of the origin:

"r2
X~ —dr ~rl near the origin.

~ 0 rk

A forll'Orl', the number of particles is finite for
nonsingular solutions.

FGI very SIQRll vRlues of t thc cquRtlon of
state (11), (12) reduces to p =Ep'@ and j~ f.
Using this equation of state and Newtonian
gravitational theory (which is expected to give a
good result for small masses and densities), one
finds that )~III&, or that m~t&. Fig. 1 gives a
schelTlatlc plot of thc dependence of 8$ on go foI"

thc cRsc thRt the clcmental y pR1 tlcles Rre
neutrons. The mass m is plotted in units of
sun's mass (2 && 10"g) against tan ' to. The curve
ncal the orlgln 18 dotted since) Rs ha8 been
already pointed out, a neutron core with a mass
less than about 0 j.Q wiH disintegrate into
nuclei Rnd clcctrons.

The striking feature of the curve is that the
IQass lncrcRscs %'Ith lncICRSlng Io until R maxi-
mum ls reached at about /0=3, after vrhich the
curve drops until a value roughly ~~ Q is reached
for fo ——~. In other words no static solutions Rt
Rll exist for m & 43 Q, two solutions exist for all ns

ln -Q &m&-Q Rnd one solution exists for Rll

m, &-'Q.
Some insight into this situation may be gained

from the following considerations. IQ the non-
relativistic polytrope solutions of Emden« the
equation of state was assumed to be p=Zp'I
=Xp'+'~". Solutions which at 6rst sight seem to
be qlll'te sRtlsfRC'tory (I.e., glvlllg R fln1te 111Rss

within a 6nite radius) were found for values of
II (5or'r 06/5. But Landau pointed oil't tilRt Ri-

though these solutions in every case give an equi-
llbllum con6guratlon, they do Qot ln cvcry cRSC

give $/Illume equlllbriunl. Tlllls, llllless 'r —4/3 the
equilibrium con6guration is unstable. This may
be seen from the follovnng rough calculation.
The gravitational part of the free energy of the
SysteHl Is Ilegative Rnd pIopoltlonRl to p where

"This solution is a limiting form of the solutions V, VI
given by Tolman in the accompanying paper.

'6 Emden, Guskggele (1907), or cf. Hondblck der Aslvo-
phys. Vol. 3, p. 186.

TAaI.E I. Mess, todils Ce8 eeltroe demsky for' eor~o@$ Mlles Of ~o.

IN UNETS OF
Eqs. {I8), {I9)

0,033
0.066
0.078
0.070
0.037

IN UNITS OF O
FOR NEUTRONS

0.30
0.60
0.71
0.64
0.34

IN UNnS OF
Kgs. (I8), (19)

1.55
0.98
0.70
0.50
0.23

21.1
13.3
9.5
6.8
3.1

NEUTRONS
Vg 1~0 I'
0.062 X10'9
0.56 X10»
2.2 g HP9
6.4 y, 10»
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p is an appropriate average density (Newtonian
gravitational theory is used). The part of the
free energy caused by compression is propor-
tional to J'pdv, and hence to p& ' (yW1). Thus

Ii = —o,p&+bp~ '.

Polytrope solutions exist for both y =5/3() 4/3),
i.e. , for n = 3/2 and for y =5/4( (4/3, but)6/5), i.e., for n=4, but as may be seen from
the schematic plot of the free energy curves in

Fig. 2, the former corresponds to stable equi-
librium and the latter to unstable equilibrium.

In the present relativistic calculations the
results for small masses and small central
densities and pressures (small values of to), as
was already mentioned above, may be expected
to agree quite closely with nonrelativistic calcu-
lations with the equation of state p=Xp'". Since

p is a monotonic function of t, the curves of free
energy against t& for fixed total number of
particles, and thus for a fixed Mo (gravitational
mass at zero density; the gravitational mass will

vary somewhat along a curve of constant
particle number, as the density increases), will

for small masses have the same general character
as the curves of free energy against some average
density in the nonrelativistic case (cf. the curve
for y=5/3 in Fig. 2). Then as the number of
particles is increased the character of the free
energy curves must change in order to admit
the possibility of a second equilibrium position.
Since the free energy must be a continuous
function of to, and since we know from non-

relativistic calculations that for small masses
(and low densities) we have a position of stable
equilibrium (a minimum in the free energy
curve) we can conclude that the second equi-
librium position corresponds either to a maxi-
mum or to an inHection point in the free energy
curve (and certainly not to a minimum). Fig. 3
gives a schematic plot of free energy against to

for different values of Mo which would explain
the existence of one equilibrium position for
small masses, two for intermediate masses, and
none for large masses. The masses marked on
the curves are the actual gravitational masses
corresponding to the equilibrium points of the
critical free energy curves separating the solu-
tions into the three types mentioned above.

-6
.5

-.4

~0r
~ ~I

0 )0 20 30

l
l

40 So
FIG. I ~

2S4t. m
I

70 80 90
TAN ''t

FIQ. 1. Dependence of m on to for neutrons.

where p, and p, are the central density and
pressure. From Eqs. (6.4), (6.6) and (6.9) of
Tolman's paper the mass corresponding to this
solution is given in terms of p, and p, by

( p.
m =4] (

—(p.—3p.) . (23)
E p.+ 3p.) 3

1' We are very much indebted to Professor Tolman for
letting us see these results before publication, and for helpful
discussions of them.

IV. DIscUssIQN —RELATIQN To TQLMAN s
SQLUTIoNs

Before we study the physical implications of
these results, we may try to show how their
qualitative features may be obtained from the
analytic solutions recently discovered by Pro-
fessor Tolman. '~ This will also help us to under-
stand the probable effect of alterations in the
equation of state of the neutron gas at high
densities.

On the one hand Tolman's solution IV, dis-
cussed in f6 of his paper, enables us to under-
stand the existence of a limiting mass for static
solutions and to give an estimate of its magni-
tude; on the other hand Tolman's solution VI,
discussed in )8 (and less directly solution V), has
for n =-'„very much the character of our singular
solution for to —+ , and, with appropriately
chosen constants, gives a mass of the same
order of magnitude as we have found.

Tolman's solution IV is nonsingular, and
corresponds to the quadratic equation of state
(6.5) of his paper:

(p.-p)'
8 —5(p, —p)+ p, —p= 0 (Tolman, 6.5),

pc+ pc
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UNSTABL

EQUILIBR

character of the solutions corresponding to
maximum mass and to maximum (infinite)
central density which we obtained above.

V. DISCUSSIDN —APPLICATION TO STELLAR

MATTER

STABLE

EQVII.IBRI

F&o. 2. Free energy as a function of average density.

If p. and p, are now themselves connected by the
Fermi equation of state (11), {12),then P, ~ p, 'I'
as pg~0, Rnd pc 3pg~0(pg ) Rs pg~ +&, Rnd II$1s
seen to have a maximum value. For values of
p, corresponding to this maximum the equation
of stRte (TollllRII 6.5) does llot differ quRlltR-

tively from the Fermi equation of state (11),
(12), as may be seen by comparing for the two
solutions the values of d ln p/d In p, and the
maximum mass in fact turns out from (23) to
be 0.4Q, agreeing in order of magnitude with
our value of 0.7Q.

Tobnan's solution V, with n=-'„R~~, »d
his solution VI, with n= ,', B/A-+0, are just our-
solution {22) corresponding to the equation of
state p=-,'p, a unique unstable singular solution.
For solution V, with e=-,' and finite R, the
pressure d18ers from 3p by terms of the order of
p
"' however, for VI with II = -', and finite B/A,

for large p, p —3p=const. p', which is just the
behavior of a highly compressed Fermi gas.
Using for the mass of this solution

(Tolman, 8.9)

and adjusting the ratio B/A to make the equa-
tion of state of VI, i.e.,

1—9(B/A)(3/56lr)&p &

p (Tolman, 8.5)
1—(B/A) (3/56lr) &p

—'*

Ke have seen that for a cold neutron core
there are no static solutions, and thus no equi-
librium, for core masses greater than m 0.7Q.
The corresponding maximum mass Mo before
collapse is some ten percent greater than this.
Since neutron cores can hardly be stable (with
respect to formation of electrons and nuclei) for
masses less than 0.1Q, and since, even after
thermonuclear sources of energy are exhausted,
they will not tend to form by collapse of ordinary
matter for masses under 1.5$ (Landau's limit),
it seems unlikely that static neutron cores can
play any great part in stellar evolution 8 and
the question of what happens, after energy
sources are exhausted, to stars of mass greater
than j..SQ still remains unanswered. It should
be observed that for the critical solution with
m 0.7'Q the potentials g„,are nowhere singular,
and that in particular such a core does not tend
to "protect itself" from the addition of further
matter by the vanishing of g44 at the boundary.
THere would then seem to be only two answers
possible to the question of the "6nal" behavior
of very massive stars: either the equation of

agree to terms of order p& with (11), (12), we get
B/A = (7/3) &, and III (1/7) 8, to compare with
the value of 3Q which the Fermi equation
gives.

These necessarily somewhat rough comparisons
may thus serve to give an idea of the analytic

FIG. 3. Schematic plot of free energy as a function of t0.

~8 The mass of the shell of ordinary (but dense) matter
surrounding the core must be small for cores much more
massive than the lightest core stable with respect to dis-
integration into electrons and nuclei.
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state we have used so far fails to describe the
behavior of highly condensed matter that the
conclusions reached above are qualitatively mis-

leading, or the star will continue to contract
indefinitely, never reaching equilibrium. Both
alternatives require serious consideration.

The central density in the "critical" core is

even higher than nuclear density, so that our
extrapolation of the Fermi equation of state can
hardly rest on a very sure basis. Under these
conditions the disintegration of neutrons, either
into protons and electrons, or into mesotrons,
will be energetically unfavorable and will not
occur. And the relatively weak attractive forces
which are known to act between neutrons will

facilitate, and not prevent, the collapse of the
core. If, however, under extreme compression,
phenomena occurred which have the eRect of
repulsive forces, i.e., of raising the pressure for a
given density above the value given by the
Fermi equation of state, this could tend to
prevent the collapse.

Such repulsive forces, even if they exist, will

hardly make possible static solutions for arbi-

trarily large amounts of matter. For at low

densities they cannot appreciably affect the
equation of state, so that the dimensions of the
core will necessarily be finite, and so will be the
gravitational mass m of the core

m=-,'rq(1 —e "') (Tolman, 5.5).

Nor can the mass 350 before collapse be infinite.
For this to be true we should have to have a
singular solution. But the effect of repulsive
forces can for high density at most be to make 3P
even more nearly equal to p than for the Fermi
equation of state; and for p=3P, as has been
remarked above, and as is also suggested by
Tolman's solutions V and VI, the only singular
static solution is (22), for which the total
particle number is finite.

We may obtain an extreme limit on the in-

crease in the limiting mass which strong repulsive
forces at high densities could give, by the
following simple argument. For p(10" g/cm'
these forces can hardly be important. Let us

assume that for p&~ j.0", they have the extreme

effect of making p=-,'p. Then the mass of a
sphere for which this equation of state holds

down to p = 10", and for which p falls rapidly as

p—+0, is given by our solution (22), and is of the
order of Q. It seems likely that our limit of

0.7S is near the truth.
This argument is based on the requirement

that even for arbitrarily high densities, p —3p
shall not be negative; and this is in turn closely
related to the positive definite character of the

(proper) energy density of neutrons and of the
6elds of force (apart from gravitation) associated
with them. It seems probable that if P could be

very much greater than -,'p, static solutions of
arbitrarily large mass could be found. "

From this discussion it appears probable that
for an understanding of the long time behavior
of actual heavy stars a consideration of non-

static solutions must be essential. Among all

(spherical) nonsta, tic solutions one would hope
to find some for which the rate of contraction,
and in general the time variation, become slower

and slower, so that these solutions might be
regarded, not as equilibrium solutions, but as
quasi-static. Some reason for this we may see
in the following argument: for large enough mass

the core will collapse; near the center the density
and pressure will grow, and g44=e" will be small

(cf. Eq. (7));and as e" grows smaller, all processes
will, as seen by an outside observer, slow down

in the central region. Formally one sees this, in

the occurrence, in Einstein's equations, of prod-

ucts of the form

d9, (dX& ' dXdve', e" —,e"——
Edt) dt dt

For high enough central densities it is no longer
. justified to neglect even a very slow time varia-

tion; and the singular solutions which pre-
sumably represent very massive neutron cores
cannot be obtained unless this is taken into
account. These solutions are now being in-

vestigated.

"Thus for p=const. there is a class of singular static
solutions, for which P~k/r~, and which would seem to lead,
for E~~, to infinite masses, and which one of us (G.M.V.)
hopes to discuss in detail elsewhere.


